1. 叉乘判别法(只适用于凸多边形)想 象一个凸多边形,其每一个边都将整个2D屏幕划分成为左右两边,连接每一边的第一个端点和要测试的点得到一个矢量v,将两个2维矢量扩展成3维的,然后将 该边与v叉乘,判断结果3维矢量中Z分量的符号是否发生变化,进而推导出点是否处于凸多边形内外。这里要注意的是,多边形顶点究竟是左手序还是右手序,这 对具体判断方式有影响。
2. 面积判别法(只适用于凸多边形)第四点分别与三角形的两个点组成的面积分别设为S1,S2,S3,只要S1+S2+S3>原来的三角形面积就不在三角形范围中.可以使用海伦公式 。推广一下是否可以得到面向凸多边形的算法?(不确定)3. 角度和判别法(适用于任意多边形)double angle = 0;realPointList::iterator iter1 = points.begin();for (realPointList::iterator iter2 = (iter1 + 1); iter2 < points.end(); ++iter1, ++iter2){ double x1 = (*iter1).x - p.x; double y1 = (*iter1).y - p.y; double x2 = (*iter2).x - p.x;double y2 = (*iter2).y - p.y; angle += angle2D(x1, y1, x2, y2);}if (fabs(angle - span::PI2) < 0.01) return true;
else return false;另外,可以使用bounding box来加速。
if (p.x < (*iter)->boundingBox.left ||p.x > (*iter)->boundingBox.right ||p.y < (*iter)->boundingBox.bottom ||p.y > (*iter)->boundingBox.top) 。。。。。。对于多边形来说,计算bounding box非常的简单。只需要把水平和垂直方向上的最大最小值找出来就可以了。
对于三角形:第四点分别与三角形的两个点的交线组成的角度分别设为j1,j2,j3,只要j1+j2+j3>360就不在三角形范围中。4. 水平/垂直交叉点数判别法(适用于任意多边形)注意到如果从P作水平向左的射线的话,如果P在多边形内部,那么这条射线与多边形的交点必为奇数,如果P在多边形外部,则交点个数必为偶数(0也在内)。所以,我们可以顺序考虑多边形的每条边,求出交点的总个数。还有一些特殊情况要考虑。假如考虑边(P1,P2),1)如果射线正好穿过P1或者P2,那么这个交点会被算作2次,处理办法是如果P的从坐标与P1,P2中较小的纵坐标相同,则直接忽略这种情况2)如果射线水平,则射线要么与其无交点,要么有无数个,这种情况也直接忽略。3)如果射线竖直,而P0的横坐标小于P1,P2的横坐标,则必然相交。4)再判断相交之前,先判断P是否在边(P1,P2)的上面,如果在,则直接得出结论:P再多边形内部。
4. 水平/垂直交叉点数判别法(适用于任意多边形)
详解:
1. 已知点point(x,y)和多边形Polygon(x1,y1;x2,y2;….xn,yn;);
2. 以point为起点,以无穷远为终点作平行于X轴的直线line(x,y; -∞,y);
3. 循环取得(for(i=0;i<n;i++))多边形的每一条边side(xi,yi;xi+1,yi+1),且判断是否平行于X轴,如果平行continue,否则,i++;
4. 同时判断point(x,y)是否在side上,如果是,则返回1(点在多边形
上),否则继续下面的判断;5. 判断线side与line是否有交点,如果有则count++,否则,i++。
6. 判断交点的总数,如果为奇数则返回0(点在多边形内),偶数则返回2(点在多边形外)。
代码:
/* 射线法判断点q与多边形polygon的位置关系,要求polygon为简单多边形,顶点逆时针排列
如果点在多边形内: 返回0
如果点在多边形边上: 返回1
如果点在多边形外: 返回2
*/
const double INFINITY = 1e10;
const double ESP = 1e-5;
const int MAX_N = 1000;
struct Point {
double x, y;
};
struct LineSegment {
Point pt1, pt2;
};
typedef vector<Point> Polygon;
// 计算叉乘 |P0P1| × |P0P2|
double Multiply(Point p1, Point p2, Point p0)
{
return ( (p1.x - p0.x) * (p2.y - p0.y) - (p2.x - p0.x) * (p1.y - p0.y) );
}
// 判断线段是否包含点point
bool IsOnline(Point point, LineSegment line)
{
return( ( fabs(Multiply(line.pt1, line.pt2, point)) < ESP ) &&
( ( point.x - line.pt1.x ) * ( point.x - line.pt2.x ) <= 0 ) &&
( ( point.y - line.pt1.y ) * ( point.y - line.pt2.y ) <= 0 ) );
}
// 判断线段相交
bool Intersect(LineSegment L1, LineSegment L2)
{
return( (max(L1.pt1.x, L1.pt2.x) >= min(L2.pt1.x, L2.pt2.x)) &&
(max(L2.pt1.x, L2.pt2.x) >= min(L1.pt1.x, L1.pt2.x)) &&
(max(L1.pt1.y, L1.pt2.y) >= min(L2.pt1.y, L2.pt2.y)) &&
(max(L2.pt1.y, L2.pt2.y) >= min(L1.pt1.y, L1.pt2.y)) &&
(Multiply(L2.pt1, L1.pt2, L1.pt1) * Multiply(L1.pt2, L2.pt2, L1.pt1) >= 0) &&
(Multiply(L1.pt1, L2.pt2, L2.pt1) * Multiply(L2.pt2, L1.pt2, L2.pt1) >= 0)
);
}
// 判断点在多边形内
bool InPolygon(const Polygon& polygon, Point point)
{
int n = polygon.size();
int count = 0;
LineSegment line;
line.pt1 = point;
line.pt2.y = point.y;
line.pt2.x = - INFINITY;
for( int i = 0; i < n; i++ ) {
// 得到多边形的一条边
LineSegment side;
side.pt1 = polygon[i];
side.pt2 = polygon[(i + 1) % n];
if( IsOnline(point, side) ) {
return1 ;
}
// 如果side平行x轴则不作考虑
if( fabs(side.pt1.y - side.pt2.y) < ESP ) {
continue;
}
if( IsOnline(side.pt1, line) ) {
if( side.pt1.y > side.pt2.y ) count++;
} else if( IsOnline(side.pt2, line) ) {
if( side.pt2.y > side.pt1.y ) count++;
} else if( Intersect(line, side) ) {
count++;
}
}
if ( count % 2 == 1 ) {return 0;}
else { return 2;}
}
}